
Writing functions in R
Ákos Bede-Fazekas

2022.01.27

Writing functions in R 2022.01.27 1 / 77



Preparation

Please

download the code from tinyurl.com/r-functions-code
open the code in RStudio (or in your preferred code editor)
and run the code (with Ctrl+Enter) that is shown in the presentation

Also, if you want, please

download this presentation from tinyurl.com/r-functions-pres

Writing functions in R 2022.01.27 2 / 77

http:/tinyurl.com/r-functions-code
http:/tinyurl.com/r-functions-pres


What is a function?

A function is a block of code which only runs when it is called.
You can pass data (“parameters”) into a function.
A function can return data as a result (“return value”).

Then,

what is a block of code?
how to call it?
how to pass data?
how to return data?

Writing functions in R 2022.01.27 3 / 77



Block of code

Any part of the R code that is surrounded by curly brackets.
writeLines("Hello!")
writeLines("This is out of the block.")
{

writeLines("This is inside the block.")
writeLines("The lines within the block are run at once.")

}
writeLines("Now we are again out of the block.")

Indentation: core/body of the block are typically indented by 2 or 4 spaces
or a tab.

Writing functions in R 2022.01.27 4 / 77



Block of code

writeLines("Hello!")

> Hello!
writeLines("This is out of the block.")

> This is out of the block.
{

writeLines("This is inside the block.")
writeLines("The lines within the block are run at once.")

}

> This is inside the block.
> The lines within the block are run at once.
writeLines("Now we are again out of the block.")

> Now we are again out of the block.
Writing functions in R 2022.01.27 5 / 77



Why to use blocks?

Blocks can embrace several lines of code that are connected to each other.
Typically used in

conditional statements (if, else)
loops (for, while)
error handling (tryCatch)
functions (function)

But, in theory, blocks can also be used anywhere else in the script.

rarely used
can be collapsed in the code editor

Writing functions in R 2022.01.27 6 / 77



Collapse blocks

Open (lines 6-9):

Collapsed (line 6):

Writing functions in R 2022.01.27 7 / 77



Blocks vs. functions

A block is run when R reaches it during reading the code.
A function is not run when R reaches it but is “defined”/“declared”
(i.e. created). Can be run later, when “called”.

A block hasn’t got name → we cannot call it.
A function has got name → we can call it by its name.

Writing functions in R 2022.01.27 8 / 77



Defining a function

Defining a function = adding name to a block.
writeLines("Hello!")
writeLines("This is out of the block.")
named_block <- function() {

writeLines("This is inside the block.")
writeLines("The lines within the block are run at once.")

}
writeLines("Now we are again out of the block.")

Two differences:

named_block <- function() in the code
output is not written to the screen (since the block was not run)

Writing functions in R 2022.01.27 9 / 77



Defining a function

writeLines("Hello!")

> Hello!
writeLines("This is out of the block.")

> This is out of the block.
named_block <- function() {

writeLines("This is inside the block.")
writeLines("The lines within the block are run at once.")

}
writeLines("Now we are again out of the block.")

> Now we are again out of the block.

Writing functions in R 2022.01.27 10 / 77



Defining a function

named_block <- function() {
writeLines("This is inside the block.")
writeLines("The lines within the block are run at once.")

}

named_block: it is the name of the block/function (we’ll use this
name later to call the function).
function(): it is the syntax of function definition. The parentheses
are needed (these will contain the parameters).
<-: value assignment similar to creating a variable (e.g. x <- 5)

Writing functions in R 2022.01.27 11 / 77



Functions vs. variables

my_variable <- 42
my_function <- function() {

writeLines("This is the body of the function.")
}

A function is similar to a variable:

it has name
a value (i.e., the block/“body of the function” + the parameters if
any) is assigned to the name
after the assignment we can get its content as many times as we want
we can copy and delete it

Writing functions in R 2022.01.27 12 / 77



Getting the content, copy and delete

We can get the content (i.e., the value of the variable or the
body+parameters of the function) by typing its name.
my_variable

> [1] 42
my_function

> function() {
> writeLines("This is the body of the function.")
> }

Writing functions in R 2022.01.27 13 / 77



Getting the content, copy and delete

We can copy the function similarly to copying a variable.
my_variable2 <- my_variable
my_function2 <- my_function

We can delete it with the rm() function.
rm(my_variable2)
rm(my_function2)
my_variable2 # error

> Error in eval(expr, envir, enclos): object 'my_variable2'
not found
my_function2 # error

> Error in eval(expr, envir, enclos): object 'my_function2'
not found

Writing functions in R 2022.01.27 14 / 77



Calling a function

Getting the function body is not what we want!
We need to execute the code inside the function body by “calling the
function”.

Call a function by typing its name followed by parentheses.
my_function()

> This is the body of the function.

Writing functions in R 2022.01.27 15 / 77



Functions in R

There are several functions in R:

built-in functions installed with R
I e.g. mean(),
I lm(),
I cbind(),
I paste() etc.

functions installed with packages
I e.g. rda(),
I lmer(),
I ggplot() etc.

functions that we defined
I e.g. my_function()

There are not so much differences between these categories.

Writing functions in R 2022.01.27 16 / 77



What is a function?

A function is a block of code which only runs when it is called.
You can pass data (“parameters”) into a function.
A function can return data as a result (“return value”).

Then,

what is a block of code?
how to call it?
how to pass data?
how to return data?

Writing functions in R 2022.01.27 17 / 77



Return value - 3 categories

Some functions return one or more values. Some don’t.
And some do but do it invisibly.

Writing functions in R 2022.01.27 18 / 77



Without return value

Functions that doesn’t return a value:

e.g. writeLines()
plot()
save()
str()
set.seed()
my_function() etc.

Writing functions in R 2022.01.27 19 / 77



Without return value

Functions that doesn’t return a value

are called “procedures” in the programming terminology,
their result is NULL,
they do something in the background (“side effect”)

Possible side effects:

writing to the console
plotting to the screen
opening/closing/writing to files (or any other connections)
modifying something in the background (variables, options etc.)

Writing functions in R 2022.01.27 20 / 77



Without return value

plot(1:3)

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

Index

1:
3

returned_value <- plot(1:3)

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

Index

1:
3

returned_value

> NULL

Writing functions in R 2022.01.27 21 / 77



Without return value

a <- 35
save(a, file = "out_file.RData")

returned_value <- save(a, file = "out_file.RData")
returned_value

> NULL

Writing functions in R 2022.01.27 22 / 77



Invisible return value

Functions returning their result invisibly:

e.g. print()
par()
options()
attach()
load() etc.

Writing functions in R 2022.01.27 23 / 77



Invisible return value

Functions returning their result invisibly

do something in the background (“side effect”),
and also produce some not-too-important results
that can be captured by assignment,
but will be lost otherwise

Examples:

load():
I loads variables from a file (side effect)
I and invisibly returns the name of the loaded variables

par():
I changes the graphical parameters (side effect)
I and invisibly returns the previous parameters (for backuping)

Writing functions in R 2022.01.27 24 / 77



Invisible return value

CASE #1: not captured → the returned value will be lost:
load("out_file.RData")

But what is/are the variable(s) that was/were loaded??

Writing functions in R 2022.01.27 25 / 77



Invisible return value

rm(a)
variables_before_load <- ls()
load("out_file.RData")
variables_after_load <- ls()
setdiff(variables_after_load, variables_before_load)

> [1] "a" "variables_before_load"

Huhh, a bit tedious. . .

Writing functions in R 2022.01.27 26 / 77



Invisible return value

CASE #2: captured → the returned value will be assigned to a variable:
loaded_variables <- load("out_file.RData")
loaded_variables

> [1] "a"

Of course, the side effect (i.e., loading the variables from the file) is done in
both cases.

Writing functions in R 2022.01.27 27 / 77



Visible return value

Functions returning one or more value(s) visibly:

e.g. mean()
sum()
lm()
paste() etc.

Most of the functions in R return some values visibly.
Multiple values are returned in vectors, lists or more complex objects
(e.g. lm()).

Writing functions in R 2022.01.27 28 / 77



Visible return value

Functions returning one or more value(s) visibly

are called for their output
they might (but rarely) have side effects
the returned value should be captured
otherwise it will be (printed on the console and then) lost
printing works only in interactive mode!

sum(3, 4, 3)

> [1] 10
summed_values <- sum(3, 4, 3)
summed_values * 2

> [1] 20

Writing functions in R 2022.01.27 29 / 77



Returning value

Our own function can be a function that

does not return any value (we have seen this)
returns a value invisibly
returns a value visibly

Writing functions in R 2022.01.27 30 / 77



Returning value - explicit statement

Explicit statement of returning a value:

invisible(): returns a value invisibly
return(): returns a value visibly

Example for invisible():
random_text <- function() {

text_beginning <- "Writing functions in R is "
text_ends <- c("a great challange", "funny", "hard for

me", "really interesting")
selected_end <- sample(x = text_ends, size = 1)
text <- paste0(text_beginning, selected_end, ".")
writeLines(text)
invisible(selected_end)

}

Writing functions in R 2022.01.27 31 / 77



Returning value - explicit statement

set.seed(20220127)
random_text()

> Writing functions in R is really interesting.
random_text()

> Writing functions in R is funny.
captured_end <- random_text()

> Writing functions in R is a great challange.
captured_end

> [1] "a great challange"

Writing functions in R 2022.01.27 32 / 77



Returning value - explicit statement

Example for return():
random_favorite <- function() {

my_favorite_numbers <- c(57, 3, 0, 217)
randomly_selected <- sample(x = my_favorite_numbers, size

= 1)
return(randomly_selected)

}
random_favorite()

> [1] 0
random_favorite()

> [1] 3
random_favorite()

> [1] 57
Writing functions in R 2022.01.27 33 / 77



Returning value - explicit statement

The body can contain multiple return()s and/or invisible()s (typically
within conditional statements).
return() and invisible() are not necessarily at the end of the function
body.
Execution of the body stops when return() or invisible() is reached.
Further lines of code will never executed.

Writing functions in R 2022.01.27 34 / 77



Returning value - explicit statement

sunny_day <- function() {
is_sunny <- sample(x = c(TRUE, FALSE), size = 1)
if (is_sunny) {

writeLines("This is a sunny day.")
return(is_sunny)
writeLines("Use sun lotion on the beach.")

} else {
writeLines("This is a cloudy day.")
return(is_sunny)
writeLines("Don't forget your umbrella.")

}
}

Writing functions in R 2022.01.27 35 / 77



Returning value - explicit statement

set.seed(20220127)
sunny_day()

> This is a cloudy day.

> [1] FALSE
sunny_day()

> This is a cloudy day.

> [1] FALSE
sunny_day()

> This is a sunny day.

> [1] TRUE

Writing functions in R 2022.01.27 36 / 77



Returning value - without explicit statement

If the end of a function body is reached without calling return() or
invisible() explicitly, the value of the last evaluated expression is
returned.
Hence, return(x) can be preplaced by x at the end of the function body.
random_even <- function() {

even_numbers <- seq(from = 2, to = 20, by = 2)
randomly_selected <- sample(x = even_numbers, size = 1)
randomly_selected

}

Writing functions in R 2022.01.27 37 / 77



Returning value - without explicit statement

random_even()

> [1] 20
random_even()

> [1] 10
random_even()

> [1] 2

Writing functions in R 2022.01.27 38 / 77



Without returning value

Our function does not return any value (i.e., returns NULL) if
1 return() or invisible() is called explicitly without an argument or
2 I execution of the body of the function is finished

I without explicit statement of returning a value
I and the execution of last line of code does not result in a value (i.e.,

NULL)

Writing functions in R 2022.01.27 39 / 77



Without returning value

do_nothing <- function() {
x <- 3
invisible()
return(x) # never reached

}
do_nothing()

> [1] 3
result <- do_nothing()
result

> [1] 3

Writing functions in R 2022.01.27 40 / 77



What is a function?

A function is a block of code which only runs when it is called.
You can pass data (“parameters”) into a function.
A function can return data as a result (“return value”).

Then,

what is a block of code?
how to call it?
how to pass data?
how to return data?

Writing functions in R 2022.01.27 41 / 77



Parameters

Parameters are the inputs of the function.
There are two types of parameters:

named parameters
unnamed parameters (...)

We’ll learn only about named parameters. Anyway, unnamed parameters are
really important features in R, but needs advenced programming skills to
understand their correct usage.

Writing functions in R 2022.01.27 42 / 77



Parameters

Named parameters have two types:

those that has default values (i.e., optional parameters), and
those that hasn’t (i.e., mandatory parameters)

Writing functions in R 2022.01.27 43 / 77



Parameters

Let’s see an example: rnorm().
This function produces some random values from a normal (Gaussian)
distribution.

Check its help page.
?rnorm

Writing functions in R 2022.01.27 44 / 77



Parameters

Writing functions in R 2022.01.27 45 / 77



Parameters

rnorm(n, mean = 0, sd = 1)

According to its help page, rnorm() has 3 named parameters:

n: number of the needed random values
mean: the mean of the normal distribution from which the random
numbers should be generated
sd: the standard deviation of the normal distribution from which the
random numbers should be generated

n is mandatory, while mean and sd have default values, so these are
optional parameters.

Writing functions in R 2022.01.27 46 / 77



Calling a function with parameters

rnorm(n = 10, mean = -50, sd = 6)

> [1] -44.08701 -57.75795 -55.40136 -41.02584 -45.44844
> [6] -53.59784 -48.16727 -48.43761 -53.23154 -47.36366
values <- rnorm(n = 50, mean = 5, sd = 0.2)
hist(values)

Histogram of values

values

F
re

qu
en

cy

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

0
5

10
15

Writing functions in R 2022.01.27 47 / 77



Calling a function with parameters

values <- rnorm(n = 20, mean = 0, sd = 1)
hist(values)

Histogram of values

values

F
re

qu
en

cy

−3 −2 −1 0 1 2

0
1

2
3

4
5

6

Since mean and sd have default values, these can be removed from the call.

Writing functions in R 2022.01.27 48 / 77



Calling a function with parameters
set.seed(1); hist(rnorm(n = 20, mean = 0, sd = 1))

Histogram of rnorm(n = 20, mean = 0, sd = 1)

rnorm(n = 20, mean = 0, sd = 1)

F
re

qu
en

cy

−2 −1 0 1 2

0
1

2
3

4
5

set.seed(1); hist(rnorm(n = 20, mean = 0))
Histogram of rnorm(n = 20, mean = 0)

rnorm(n = 20, mean = 0)

F
re

qu
en

cy

−2 −1 0 1 2

0
1

2
3

4
5

set.seed(1); hist(rnorm(n = 20))
Histogram of rnorm(n = 20)

rnorm(n = 20)

F
re

qu
en

cy

−2 −1 0 1 2

0
1

2
3

4
5

Writing functions in R 2022.01.27 49 / 77



Calling a function with parameters

But n hasn’t got default value!
hist(rnorm()) # argument "n" is missing, with no default

> Error in rnorm(): argument "n" is missing, with no
default

Writing functions in R 2022.01.27 50 / 77



Calling a function with parameters

Parameters have not only names but order.
This is why naming the parameters is necessary only if you want to give the
parameters in different order.

These are the same:
set.seed(1); rnorm(n = 5, mean = 15, sd = 3)

> [1] 13.12064 15.55093 12.49311 19.78584 15.98852
set.seed(1); rnorm(mean = 15, n = 5, sd = 3)

> [1] 13.12064 15.55093 12.49311 19.78584 15.98852
set.seed(1); rnorm(5, 15, 3)

> [1] 13.12064 15.55093 12.49311 19.78584 15.98852

Writing functions in R 2022.01.27 51 / 77



Calling a function with parameters

R first matches the named parameters (15 → mean). Then tries to match
the unnamed parameters (5, 3) based on the order of the lacking
parameters (n, sd).
set.seed(1); rnorm(n = 5, mean = 15, sd = 3)

> [1] 13.12064 15.55093 12.49311 19.78584 15.98852
set.seed(1); rnorm(mean = 15, 5, 3)

> [1] 13.12064 15.55093 12.49311 19.78584 15.98852

Writing functions in R 2022.01.27 52 / 77



Calling a function with parameters

Of course, optional parameters are optional even if not named!
E.g., sd is missing:
set.seed(1); rnorm(n = 5, mean = 15)

> [1] 14.37355 15.18364 14.16437 16.59528 15.32951
set.seed(1); rnorm(mean = 15, 5)

> [1] 14.37355 15.18364 14.16437 16.59528 15.32951

Writing functions in R 2022.01.27 53 / 77



Calling a function with parameters

If you want to skip a parameter (e.g. mean):

you must use the names
or add extra commas

set.seed(1); rnorm(n = 5, sd = 3)

> [1] -1.8793614 0.5509300 -2.5068858 4.7858424 0.9885233
set.seed(1); rnorm(5, , 3)

> [1] -1.8793614 0.5509300 -2.5068858 4.7858424 0.9885233

Writing functions in R 2022.01.27 54 / 77



Calling a function with parameters

A suggestion from the wise Uncle Ákos:

Almost always use parameter names.
The only exception is the function that has one mandatory parameter
(e.g. print(x), str(object), set.seed(seed)).

Writing functions in R 2022.01.27 55 / 77



Calling a function with parameters

Some R users prefer calling functions without parameter names, like this:
seq(3, 12, 3)

> [1] 3 6 9 12

I recommend the following solution, since it is

much more readible
harder to do mistakes

seq(from = 3, to = 12, by = 3)

> [1] 3 6 9 12

Writing functions in R 2022.01.27 56 / 77



Arguments vs. parameters

The terms “argument” and “parameter” are usually thought to be
interchangeable.
To be honest, these differ.

Parameter is the parking place for the argument (the auto).

Writing functions in R 2022.01.27 57 / 77



Arguments vs. parameters

So calling
seq(from = 3, to = 12, by = 3)

> [1] 3 6 9 12

means that parameters from, to and by get the arguments (i.e., the
values) 3, 12 and 3 for further processing inside the body of seq().

Anyway, hardly anyone cares the difference between parameters and
arguments, so it’s not a problem if you interchange them.
I do too. . .

Writing functions in R 2022.01.27 58 / 77



Adding parameters to our function

Adding parameters to our function is really simple:

just give the name of the parameters within the parentheses (separated
by commas)
and give a default value if you want (use the = sign)
just like in the help pages

increase <- function(x, by = 1) {
return(x + by)

}

Writing functions in R 2022.01.27 59 / 77



Adding parameters to our function
Calling the function is as learnt previously:
increase(x = 5)

> [1] 6
increase(5)

> [1] 6
increase(x = 7, by = 4)

> [1] 11
increase(7, 4)

> [1] 11
increase(by = 4, x = 7)

> [1] 11
Writing functions in R 2022.01.27 60 / 77



Adding parameters to our function

Let’s get the first (or the one from the nth position) odd or even number
from a numeric vector called numbers.
get_odd_even <- function(numbers, odd = TRUE, position = 1)
{

odd_numbers <- numbers[numbers %% 2 == 1]
even_numbers <- numbers[numbers %% 2 == 0]
preferred_numbers <- if (odd) odd_numbers else

even_numbers
if (length(preferred_numbers) < position) {

return(NA)
} else {

return(preferred_numbers[position])
}

}

Writing functions in R 2022.01.27 61 / 77



Adding parameters to our function

get_odd_even(numbers = 1:10)

> [1] 1
get_odd_even(numbers = 1:10, odd = FALSE)

> [1] 2
get_odd_even(numbers = 1:10, position = 4)

> [1] 7
get_odd_even(numbers = 1:10, odd = FALSE, position = 4)

> [1] 8

Writing functions in R 2022.01.27 62 / 77



Scope and lifetime

Within the function body, you can

use the parameters as if they were variables,
create new variables.

But these variables are temporary ones!

Writing functions in R 2022.01.27 63 / 77



Scope and lifetime

Parameters or new variables: numbers, odd, position, odd_numbers,
even_numbers and preferred_numbers.
get_odd_even <- function(numbers, odd = TRUE, position = 1)
{

odd_numbers <- numbers[numbers %% 2 == 1]
even_numbers <- numbers[numbers %% 2 == 0]
preferred_numbers <- if (odd) odd_numbers else

even_numbers
if (length(preferred_numbers) < position) {

return(NA)
} else {

return(preferred_numbers[position])
}

}

Writing functions in R 2022.01.27 64 / 77



Scope and lifetime

These temporary variables have a limited lifetime.
They are born when the function is called (not when defined!), and died
when the execution of the function is finished.

Although we defined the function (and variable odd_numbers inside its
body and position as its parameter), this will fail:
odd_numbers # error

> Error in eval(expr, envir, enclos): object 'odd_numbers'
not found
position # error

> Error in eval(expr, envir, enclos): object 'position' not
found

odd_numbers and position have not been born yet, since the function is
not called.

Writing functions in R 2022.01.27 65 / 77



Scope and lifetime

get_odd_even(numbers = 1:10, odd = FALSE, position = 4)

> [1] 8
odd_numbers # error

> Error in eval(expr, envir, enclos): object 'odd_numbers'
not found
position # error

> Error in eval(expr, envir, enclos): object 'position' not
found

When the function is finished (it returns a value), the temporary variables
die.

Writing functions in R 2022.01.27 66 / 77



Scope and lifetime

The temporary variables have a local scope. They are available inside the
function body and might mask (but not delete/modify) global variables
with the same name.
odd_numbers <- c(7, 9, 11)
get_odd_even(numbers = 1:10, odd = TRUE, position = 2)

> [1] 3
odd_numbers

> [1] 7 9 11

Temporarily, two odd_numbers existed in parallel:

a global one containing 7, 9 and 11
a local one containing 1, 3, 5, 7 and 9

Writing functions in R 2022.01.27 67 / 77



What is a function?

A function is a block of code which only runs when it is called.
You can pass data (“parameters”) into a function.
A function can return data as a result (“return value”).

Then,

what is a block of code?
how to call it?
how to pass data?
how to return data?

Writing functions in R 2022.01.27 68 / 77



Why should I write a function?

Why should I write a function?
The answer is simple: to avoid repetition.

Writing a repetitive script

is time-consuming and
gives more occasion to introduce bugs in your scripts.

Writing functions in R 2022.01.27 69 / 77



Why should I write a function?

Let’s say we have a large data.frame containing species in columns,
locations in rows and the abundance in the cells.
abundances_df <- data.frame(matrix(data = sample(x = 0:10,
size = 100 * 5, replace = TRUE), ncol = 5))
colnames(abundances_df) <- LETTERS[1:5]
str(abundances_df)

> 'data.frame': 100 obs. of 5 variables:
> $ A: int 10 2 0 4 4 9 5 9 6 8 ...
> $ B: int 2 10 0 5 5 3 8 4 0 2 ...
> $ C: int 6 3 3 0 9 3 8 8 10 8 ...
> $ D: int 7 8 5 0 7 8 8 10 5 7 ...
> $ E: int 7 0 2 0 2 5 10 7 6 3 ...

Writing functions in R 2022.01.27 70 / 77



Why should I write a function?

Let’s imagine we have not only 5 but much more species (several hundred).
And we want to do some repetitive tasks for each species. Huhh, seems to
be a lot of work!!

Example task:

delete the values that larger than 8 (these are measurement errors)
calculate the relative abundance of the selected species (as the ratio of
total abundance within the studied locations)
plot a histogram
and save the histogram as a PNG file

Writing functions in R 2022.01.27 71 / 77



Why should I write a function?
Just try to solve the tasks for one selected species, called “A”, out of the
several hundred species:
abundance <- abundances_df[, "A"]
abundance[abundance > 8] <- NA
abundance <- abundance / sum(abundance, na.rm = TRUE)
png("A.png")
hist(abundance, breaks = 6, main = "A")
dev.off()

> pdf
> 2

Writing functions in R 2022.01.27 72 / 77



Why should I write a function?

Now do this for all the other several hundred speces.

The dull solution: Ctrl+C, Ctrl+V, and change the species name (“A”) in
all rows.
And repeat it until you go crazy. . .

The smart solution: write a function, and call this function for all species

Writing functions in R 2022.01.27 73 / 77



Why should I write a function?

When translating a code to function, be sure that

every calculation is dependent on its input parameters,
so you should change "A" to something else.

clean_and_plot <- function(species_name) {
abundance <- abundances_df[, species_name]
abundance[abundance > 8] <- NA
abundance <- abundance / sum(abundance, na.rm = TRUE)
png(paste0(species_name, ".png"))
hist(abundance, breaks = 6, main = species_name)
dev.off()
invisible()

}

"A" is now got as input parameter (the value of species_name).

Writing functions in R 2022.01.27 74 / 77



Why should I write a function?

Let’s try our new function.
clean_and_plot(species_name = "C")

This is C.png:

Writing functions in R 2022.01.27 75 / 77



Why should I write a function?

It works. So we can call it repetitively inside a for loop:
for (selected_species in colnames(abundances_df)) {

clean_and_plot(species_name = selected_species)
}

Or the same with lapply() (more elegant solution):
nulls <- lapply(X = colnames(abundances_df), FUN =
clean_and_plot)

Writing functions in R 2022.01.27 76 / 77



The end

Thank you for your kind attention.

Writing functions in R 2022.01.27 77 / 77


