
Error handling and debugging in R
Ákos Bede-Fazekas

2022.10.20

Error handling and debugging in R 2022.10.20 1 / 100

Preparation

Please

download the code (R_errors_ABF.r) and the presentation
(R_errors_ABF.pdf) from tinyurl.com/talentia-errors
and (if you want) open the code in RStudio (or in your preferred code
editor)
and run the code (with Ctrl+Enter) that is shown in the presentation

Also, please set the working directory by setwd() to point to the location
of the downloaded files.

Error handling and debugging in R 2022.10.20 2 / 100

https://tinyurl.com/talentia-errors

Main topics

throwing errors, warnings, messages
suppressing and handling errors, warnings, messages
call stack
type of errors, finding bugs
interactive and non-interactive debugging (briefly)

Error handling and debugging in R 2022.10.20 3 / 100

Preface

Errors (and warnings) are frustrating and we hate them. . .
However, this is the way R can communicate with the user.
Communication is good.

Error handling and debugging in R 2022.10.20 4 / 100

Communication with the user

Ther are 3 types/levels of communication:

message (simple information)
warning (sign of a possible problem, the user can evaluate whether it is
an issue or not)
error (a problem that cannot be skipped)

Warnings and errors are called exceptions.

Error handling and debugging in R 2022.10.20 5 / 100

Communication with the user

Message

rarely used
e.g. when loading a package with library()
can be ignored

Warning

needs decision by the user
thrown after the script is terminated

Error

needs no decision, must be solved
thrown inmediately
running is stopped

Error handling and debugging in R 2022.10.20 6 / 100

Communication with the user

We (the script-writers) can communicate with the user (= the future-us)
through R.

message: message()
warning: warning()
error: stop()

Each of them can be called with or without parameter.

Error handling and debugging in R 2022.10.20 7 / 100

Communication with the user

message()
>
warning()
> Warning:
stop()
> Error in eval(expr, envir, enclos):

Error handling and debugging in R 2022.10.20 8 / 100

Communication with the user

message("This is a simple information. You can ignore
this.")
> This is a simple information. You can ignore this.
warning("Well, it is strange. You might want to fix this.")
> Warning: Well, it is strange. You might want to fix this.
stop("Oh no. I must stop running here.")
> Error in eval(expr, envir, enclos): Oh no. I must stop
running here.

Error handling and debugging in R 2022.10.20 9 / 100

Communication with the user

Typically we throw warnings/error in some specific cases (within if
statements).
divide <- function(a, b) {

if (b == 0) stop("You cannot divide by 0.")
else if (b == 1) warning("There might be a typo
here. There is no reason to divide by 1.")
return(a / b)

}

Error handling and debugging in R 2022.10.20 10 / 100

Communication with the user

divide(5, 2)
> [1] 2.5
divide(5, 1)
> Warning in divide(5, 1): There might be a typo here.
There
> is no reason to divide by 1.
> [1] 5
divide(5, 0)
> Error in divide(5, 0): You cannot divide by 0.

Error handling and debugging in R 2022.10.20 11 / 100

Scaling up warnings to errors

Warnings

are collected and displayed after the script is terminated
only 50 warnings are stored by default (can be increased by
e.g. options(nwarnings = 1000))
only the last 50 warnings can be displayed by warnings()
we might be interested in the first warning (which is hidden from us)

Error handling and debugging in R 2022.10.20 12 / 100

Scaling up warnings to errors

for (i in 1:60) {
if (i == 60) warning("60 is an ugly number.")
warning("I don't like for loops. Please use
sapply() instead.")

}

> There were 50 or more warnings (use warnings() to see the
first 50)

Error handling and debugging in R 2022.10.20 13 / 100

Scaling up warnings to errors

length(last.warning)
> [1] 50

But we know we have 60+1 warnings!!

Error handling and debugging in R 2022.10.20 14 / 100

Scaling up warnings to errors
Sometimes we should check (and solve) each warning one by one.
We can display only the first 50 warnings. . .
warnings()
> Warning messages:
> 1: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 2: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 3: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 4: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 5: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 6: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 7: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 8: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 9: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 10: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 11: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 12: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 13: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 14: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 15: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 16: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 17: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 18: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 19: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 20: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 21: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 22: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 23: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 24: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 25: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 26: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 27: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 28: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 29: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 30: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 31: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 32: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 33: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 34: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 35: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 36: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 37: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 38: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 39: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 40: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 41: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 42: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 43: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 44: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 45: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 46: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 47: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 48: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 49: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.
> 50: In eval(expr, envir, enclos) :
> I don't like for loops. Please use sapply() instead.

Error handling and debugging in R 2022.10.20 15 / 100

Scaling up warnings to errors

Solution: we can turn every warnings to errors.
Hence, the script will stop when a warning (= error) is thrown.

upscale: options(warn = 2)
restore the default: options(warn = 0)

Error handling and debugging in R 2022.10.20 16 / 100

Scaling up warnings to errors

options(warn = 2)
for (i in 1:10) {

warning("I found a possible problem.")
}
> Error in eval(expr, envir, enclos): (converted from
warning) I found a possible problem.
print(i)
> [1] 1

The for loop stopped at the 1st iteration.

Error handling and debugging in R 2022.10.20 17 / 100

Scaling up warnings to errors

options(warn = 0)

Restored to the default (warnings are only warnings).

Error handling and debugging in R 2022.10.20 18 / 100

Suppressing errors, warnings, messages

Sometimes we are not interested in R’s communication attempts.
We can ignore messages and warnings.
But we can also suppress (= hide from the screen) them.

Error handling and debugging in R 2022.10.20 19 / 100

Suppressing errors, warnings, messages

Three main functions:

suppressMessages(): suppress all texts thrown by meassage()
suppressPackageStartupMessages(): suppress messages thrown
when loading packages with library()
suppressWarnings(): suppress all texts thrown by warning()

We can embrace the original function call.
The result of the call is re-returned by these suppressing functions.

Error handling and debugging in R 2022.10.20 20 / 100

Suppressing errors, warnings, messages

x <- divide(5, 1)
> Warning in divide(5, 1): There might be a typo here.
There
> is no reason to divide by 1.
print(x)
> [1] 5
y <- suppressWarnings(divide(5, 1))
print(y)
> [1] 5

Error handling and debugging in R 2022.10.20 21 / 100

Suppressing errors, warnings, messages

hello <- function(name) {
name_uppercase <- toupper(name)
message(paste0("Hello ", name_uppercase))
return(name_uppercase)

}

Error handling and debugging in R 2022.10.20 22 / 100

Suppressing errors, warnings, messages

hello("Mary")
> Hello MARY
> [1] "MARY"
suppressMessages(hello("Joe"))
> [1] "JOE"

Error handling and debugging in R 2022.10.20 23 / 100

Suppressing errors, warnings, messages

Why suppressing? E.g. to get visually pleasing output.
sum_to_n <- function(n) {

s <- 0
writeLines("Calculation is in progress", sep = "")
for (i in 1:n) {

Sys.sleep(0.5) # wait 0.5 sec
s <- s + i
message(paste0("i = ", as.character(i)))
writeLines(".", sep = "")

}
writeLines(" done")
return(s)

}

Error handling and debugging in R 2022.10.20 24 / 100

Suppressing errors, warnings, messages

sum_to_n(5)
> Calculation is in progress
> i = 1
> .
> i = 2
> .
> i = 3
> .
> i = 4
> .
> i = 5
> . done
> [1] 15

Error handling and debugging in R 2022.10.20 25 / 100

Suppressing errors, warnings, messages

suppressMessages(sum_to_n(5))
> Calculation is in progress..... done
> [1] 15

Error handling and debugging in R 2022.10.20 26 / 100

Suppressing errors, warnings, messages

install.packages("sf")
library(sf)
> Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
detach("package:sf", unload = TRUE) # unload package
suppressPackageStartupMessages(library(sf))

Error handling and debugging in R 2022.10.20 27 / 100

Suppressing errors, warnings, messages

suppressMessages() does not suppress all text information.
hello2 <- function(name) {

name_uppercase <- toupper(name)
text_to_display <- paste0("Hello ", name_uppercase)
message(text_to_display)
print(text_to_display)
cat(text_to_display, "\n")
writeLines(text_to_display)
return(name_uppercase)

}

Error handling and debugging in R 2022.10.20 28 / 100

Suppressing errors, warnings, messages

result <- suppressMessages(hello2("Ann"))
> [1] "Hello ANN"
> Hello ANN
> Hello ANN
print(result)
> [1] "ANN"

Error handling and debugging in R 2022.10.20 29 / 100

Suppressing errors, warnings, messages

If we want to suppress almost all text information from the screen, we must
sink() the text outputs from the default display device (= screen) to

a permanent text file (we are interested in the output, but do not want
to see on the screen),
a temporary text file (we are not interested in the output), or
nowhere (in Unix-like operating systems: "/dev/null"; we are not
interested in the output).

I do not show here, please call ?sink to get information.

Error handling and debugging in R 2022.10.20 30 / 100

Suppressing errors, warnings, messages

There is no way to suppress all texts. (Or at least I haven’t found a solution
yet.)
Some packages/functions push text to the screen from C or system calls.
I hate them!

Error handling and debugging in R 2022.10.20 31 / 100

Handling exceptions

Errors cannot be suppressed in the way described above.
But errors (and warnings) can be handled.
Handling error = catching the error and, if possible, resume the program
running.

Error handling and debugging in R 2022.10.20 32 / 100

Handling exceptions

Errors can be handled by try() and tryCatch().

try(expr, silent = FALSE)
tryCatch(expr, error, warning, finally)

I prefer tryCatch() (it is more flexible).

Error handling and debugging in R 2022.10.20 33 / 100

Handling exceptions - try()

try(expr) tries to evaluate the expression expr.

if succeeds: returns the result of the evaluated expression
if fails: returns the error (which is special object containing the type
and the error message)

Typically, we call try() and then check its result (whether it is a child of
class try-error):

result <- try(expr)
if (inherits(result, "try-error")) ...

Error handling and debugging in R 2022.10.20 34 / 100

Handling exceptions - try()

default_value <- 3
user_supplied_value <- "a"
result <- try(expr = log(user_supplied_value))
> Error in log(user_supplied_value) :
> non-numeric argument to mathematical function

Error is printed to the screen (because parameter silent of try() was set
to the default, FALSE).
But the running of the program is not stopped.
The variable result can be a number or an error-object.

Error handling and debugging in R 2022.10.20 35 / 100

Handling exceptions - try()

if (inherits(result, "try-error")) {
result <- log(default_value)
warning(paste0("The value you provided (",
as.character(user_supplied_value), ") was
replaced by the default value (",
as.character(default_value), ")."))

}
> Warning: The value you provided (a) was replaced by the
> default value (3).

Error handling and debugging in R 2022.10.20 36 / 100

Handling exceptions - try()

If we do not want to see the error message, set parameter silent to TRUE:
result <- try(expr = log("a"), silent = TRUE)
print(result)
> [1] "Error in log(\"a\") : non-numeric argument to
mathematical function\n"
> attr(,"class")
> [1] "try-error"
> attr(,"condition")
> <simpleError in log("a"): non-numeric argument to
mathematical function>

Error handling and debugging in R 2022.10.20 37 / 100

Handling exceptions - try()

The expression can contain multiple statements.
Embrace them with {}.
result <- try(expr = {

x <- "a"
log(x)

}, silent = TRUE)

Error handling and debugging in R 2022.10.20 38 / 100

Handling exceptions - tryCatch()

tryCatch() is a bit more sophisticated than try().
It has 4 main parameters:

expr: the expression to be evaluated
error: a one-parameter function that will be called if the expression
throws an error
warning: a one-parameter function that will be called if the expression
throws a warning
finally: some lines of code (i.e. an expression) to be run after expr
and error/warning were evaluated

Parameters error, warning and finally are optional.

Error handling and debugging in R 2022.10.20 39 / 100

Handling exceptions - tryCatch()

Typical usage of tryCatch():
tryCatch(

expr = {...},
error = function(error_caught) {...},
finally = {...}

)

or:
tryCatch(

expr = {...},
error = function(error_caught) {...},
warning = function(warning_caught) {...},
finally = {...}

)

Error handling and debugging in R 2022.10.20 40 / 100

Handling exceptions - tryCatch()

value <- "five"
tryCatch(

expr = {x <- 3 + value},
error = function(error_caught) {

x <- NA
writeLines(paste0("A problem occured: ",
as.character(error_caught)))

},
finally = {print(x)}

)
> A problem occured: Error in 3 + value: non-numeric
argument to binary operator

>
> [1] "a"

Error handling and debugging in R 2022.10.20 41 / 100

Handling exceptions - tryCatch()

value <- "five"
tryCatch(

expr = {x <- 3 + value},
error = function(error_caught) {

x <- NA
writeLines(paste0("A problem occured: ",
as.character(error_caught)))

},
finally = {print(x)}

)

The parameter of the error-handling function contains the original error
message.
It is not displayed unless we force it.

Error handling and debugging in R 2022.10.20 42 / 100

Handling exceptions - tryCatch()

value <- 5
tryCatch(

expr = {x <- 3 + value},
error = function(error_caught) {

x <- NA
writeLines(paste0("A problem occured: ",
as.character(error_caught)))

},
finally = {print(x)}

)
> [1] 8

The expression defined by parameter finally is always evaluated.

Error handling and debugging in R 2022.10.20 43 / 100

Handling exceptions - tryCatch()

Evaluation of expr is stopped when

the first handled error or warning is caught, or
an unhandled error occurs (if parameters error and warning are not
set)
at the end (if no errors occured or no warning was caught)

Error handling and debugging in R 2022.10.20 44 / 100

Handling exceptions - tryCatch()

Warning is not caught:
tryCatch(

expr = {
for (i in 3:0) {

print(divide(5, i))
}

},
error = function(error_caught)
{writeLines(paste0("Error found: ",
as.character(error_caught)))}

)

Error handling and debugging in R 2022.10.20 45 / 100

Handling exceptions - tryCatch()

> [1] 1.666667
> [1] 2.5
> Warning in divide(5, i): There might be a typo here.
There

> is no reason to divide by 1.
> [1] 5
> Error found: Error in divide(5, i): You cannot divide by
0.

Error handling and debugging in R 2022.10.20 46 / 100

Handling exceptions - tryCatch()

Warning is caught, so we do not reach the error:
tryCatch(

expr = {
for (i in 3:0) {

print(divide(5, i))
}

},
error = function(error_caught)
{writeLines(paste0("Error found: ",
as.character(error_caught)))},

warning = function(warning_caught)
{writeLines(paste0("Warning found: ",
as.character(warning_caught)))}

)

Error handling and debugging in R 2022.10.20 47 / 100

Handling exceptions - tryCatch()

> [1] 1.666667
> [1] 2.5
> Warning found: simpleWarning in divide(5, i): There
might be a typo here. There is no reason to divide by 1.

Error handling and debugging in R 2022.10.20 48 / 100

Handling exceptions - tryCatch()

An unhandled error occurs (parameter error was not set):
tryCatch(

expr = {
for (i in 3:0) {

print(divide(5, i))
}

}
)
> [1] 1.666667
> [1] 2.5
> Warning in divide(5, i): There might be a typo here.
There
> is no reason to divide by 1.
> [1] 5
> Error in divide(5, i): You cannot divide by 0.

Error handling and debugging in R 2022.10.20 49 / 100

Handling exceptions - tryCatch()

If no errors occur:
tryCatch(

expr = {
for (i in 5:2) {

print(divide(5, i))
}

}
)
> [1] 1
> [1] 1.25
> [1] 1.666667
> [1] 2.5

Error handling and debugging in R 2022.10.20 50 / 100

Handling exceptions - tryCatch()

If we need all the errors/warnings to be caught, we should place the
tryCatch() at low level:
for (i in 3:0) {

tryCatch(
expr = {

print(divide(5, i))
},
error = function(error_caught)
{writeLines(paste0("Error found: ",
as.character(error_caught)))},

warning = function(warning_caught)
{writeLines(paste0("Warning found: ",
as.character(warning_caught)))}

)
}

Error handling and debugging in R 2022.10.20 51 / 100

Handling exceptions - tryCatch()

> [1] 1.666667
> [1] 2.5
> Warning found: simpleWarning in divide(5, i): There
might be a typo here. There is no reason to divide by 1.

>
> Error found: Error in divide(5, i): You cannot divide by
0.

Error handling and debugging in R 2022.10.20 52 / 100

Handling exceptions - tryCatch()

tryCatch() returns (invisibly)

the last evaluated statement within expr (if no errors occur)
the returned value of the error/warning handling functin (if
error/warning occured)

We rarely use the returned value.

Error handling and debugging in R 2022.10.20 53 / 100

Handling exceptions - tryCatch()

No error occurs; last evaluated expression (x * 100) is returned:
result <- tryCatch(

expr = {
x <- divide(5, 3)
x * 100

},
error = function(error_caught) {

writeLines(paste0("Error found: ",
as.character(error_caught)))
return(NA)

}
)
print(result)
> [1] 166.6667

Error handling and debugging in R 2022.10.20 54 / 100

Handling exceptions - tryCatch()

Error caught; error-handling function returns the result of tryCatch():
result <- tryCatch(

expr = {
x <- divide(5, 0)
x * 100

},
error = function(error_caught) {

writeLines(paste0("Error found: ",
as.character(error_caught)))
return(NA)

}
)
> Error found: Error in divide(5, 0): You cannot divide by
0.
print(result)
> [1] NA

Error handling and debugging in R 2022.10.20 55 / 100

Handling exceptions - tryCatch()

When should we use finally?

if the expr starts something
that should be stopped/finalized
regardless of whether we have caught an error or not

Examples:

a (file) connection opened by open() for writing should be closed by
close()
a printing device opened by png(), jpeg() etc. should be closed by
dev.off()
a folder or file should be deleted by unlink() or file.remove()
sink()ing of outputs to file/nowhere should be stopped by
sink(NULL)
original (graphical) options should be restored by options() or par()

Error handling and debugging in R 2022.10.20 56 / 100

Handling exceptions - tryCatch()

Let’s see a typical example.
Original code:
png(file = "plot1.png", width = 400, height = 400)
plot(x = 1:3, y = 6:4, col = "red")
dev.off()
> pdf
> 2

1.0 1.5 2.0 2.5 3.0

4.
0

4.
5

5.
0

5.
5

6.
0

1:3

6:
4

But what happens when an error occurs within plot()?
Script is stopped, and the device is not closed. (We cannot open the png
file.)

Error handling and debugging in R 2022.10.20 57 / 100

Handling exceptions - tryCatch()

Embraced by tryCatch(), no error:
tryCatch(

expr = {
png(file = "plot1.png", width = 400, height = 400)
plot(x = 1:3, y = 6:4, col = "red")

},
finally = {

dev.off()
}

)

Does the same, although it is a bit longer. . .

Error handling and debugging in R 2022.10.20 58 / 100

Handling exceptions - tryCatch()

Embraced by tryCatch(), error within plot():
tryCatch(

expr = {
png(file = "plot2.png", width = 400, height = 400)
plot(x = 1:3, y = 6:1, col = "red")

},
finally = {

dev.off()
}

)
> Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and
'y' lengths differ

Error handling and debugging in R 2022.10.20 59 / 100

Call stack

Function f() can call function g(), which can call function h(), and so on.
In R, high-level functions regularly call low-level functions through a
sequence of intermediate-level functions.
“Call stack”: the sequence of the functions calling each other.
(Stack is a special data type used in different programming languages.)

Error handling and debugging in R 2022.10.20 60 / 100

Call stack

high_level <- function() {
intermediate_level_1()

}
intermediate_level_1 <- function() {

intermediate_level_2()
}
intermediate_level_2 <- function() {

low_level()
}
low_level <- function() {

message("Hello.")
}

Error handling and debugging in R 2022.10.20 61 / 100

Call stack

If we call function high_level(), we’ll get some message from function
low_level():
high_level()
> Hello.

Error handling and debugging in R 2022.10.20 62 / 100

Call stack

R is known to throw error messages

that are hard to understand
IMHO, they are not hard to understand
but they are not thrown in the optimal level.

Usually we are familiar with the high-level function

we know it’s name
we know its parameterization
we know its desired behavior etc.

And we usually do not know which intermediate and low-level functions are
called in the background and how they work.

Error handling and debugging in R 2022.10.20 63 / 100

Call stack

But the errors usually occur at low level. . .
Hence we got an error message that is totally unexpected and
ununderstandable.

Error handling and debugging in R 2022.10.20 64 / 100

Call stack

Let’s see it in a toy example:
high_level <- function() {

intermediate_level_1()
}
intermediate_level_1 <- function() {

intermediate_level_2()
}
intermediate_level_2 <- function() {

low_level()
}
low_level <- function() {

stop("Some problems are found here.")
}

Error handling and debugging in R 2022.10.20 65 / 100

Call stack

high_level()
> Error in low_level(): Some problems are found here.

We are familiar with function high_level().
What is function low_level()?! We never called it! Why does it throw an
error?

Error handling and debugging in R 2022.10.20 66 / 100

Call stack

Solution: we can print the call stack right after the error occurs by
traceback().
high_level()
traceback()

> Error in low_level(): Some problems are found here.
> 5: high_level()
> 4: intermediate_level_1()
> 3: intermediate_level_2()
> 2: low_level()
> 1: stop("Some problems are found here.")

Error handling and debugging in R 2022.10.20 67 / 100

Call stack

Even basic functions like print() calls some low-level functions:
plot(x = 1:3, y = 6:1, col = "red")
traceback()

> Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and
'y' lengths differ

> 4: plot(x = 1:3, y = 6:1, col = "red")
> 3: plot.default(x = 1:3, y = 6:1, col = "red")
> 2: xy.coords(x, y, xlabel, ylabel, log)
> 1: stop("'x' and 'y' lengths differ")

Error handling and debugging in R 2022.10.20 68 / 100

Call stack

wrong_function <- function() {
df <- data.frame(matrix(data = 1:10, nrow = 5, ncol = 2))
return(lapply(X = colnames(df), FUN =
function(column_name) {

sapply(X = df[[column_name]], FUN = function(value) {
value + "a" # error will be thrown here

})
}))

}

Error handling and debugging in R 2022.10.20 69 / 100

Call stack

wrong_function()
traceback()

> Error in value + "a": non-numeric argument to binary
operator

> 6: wrong_function()
> 5: lapply(X = colnames(df), FUN = function(column_name) {
> sapply(X = df[[column_name]], FUN = function(value) {
> value + "a"
> })
> })
> 4: FUN(X[[i]], ...)
> 3: sapply(X = df[[column_name]], FUN = function(value) {
> value + "a"
> })
> 2: lapply(X = X, FUN = FUN, ...)
> 1: FUN(X[[i]], ...)

Error handling and debugging in R 2022.10.20 70 / 100

Call stack

Hint: if you are going to create your own R function or package that you
want to share with others, please:

write the function/package in a foolproof way
check every possible problems regarding the input parameters (length,
type, NAs etc.)
and stop() the function at high level with informative error message
(including solution for the error)
or at least provide some warning()s if the inputs might cause error at
lower level
never cause a situation that the user must call traceback() to
understand the reason your function is not working!

Be aware of Murphy’s low: Anything that can go wrong will go wrong.
Future users will surely call your function with
ill-shaped/wrong-type/erroneous inputs!

Error handling and debugging in R 2022.10.20 71 / 100

Call stack

Tracing back the propagation of the error through the call stack with
traceback() is extremely useful when

we have a script/function containing several lines of code
and we de not know which line causes the error
since the error message does not give information about the location

When a code is called from a script file (.r), then traceback() provide the
line number.

Error handling and debugging in R 2022.10.20 72 / 100

Call stack

Let’s see an example from a package available on CRAN.
Package dismo is used for species distribution modeling.
It has some high-level functions for modeling that call the low-level function
.roc() for calculation a goodness-of-fit measure of the model.
The source code is available here: rdrr.io/cran/dismo/src/R/gbm.utils.R

Error handling and debugging in R 2022.10.20 73 / 100

https://rdrr.io/cran/dismo/src/R/gbm.utils.R

Call stack

Let’s import the function by source()ing its source file:
source("gbm.utils.r")

Function .roc() works quite well for datasets (100 < size < 100,000)
typically used for distribution modeling:
size <- 1000
.roc(obsdat = sample(x = 0:1, size = size, replace =
TRUE), preddat = runif(n = size, min = 0, max = 1))
> [1] 0.4761

Error handling and debugging in R 2022.10.20 74 / 100

Call stack

But the package was not tested for really large datasets, when a bug occurs:
size <- 1000000
.roc(obsdat = sample(x = 0:1, size = size, replace =
TRUE), preddat = runif(n = size, min = 0, max = 1))
> Warning in n.x * n.y: NAs produced by integer overflow

> Warning in n.x * n.y: NAs produced by integer overflow
> [1] NA

NA value is produced with some warnings.

Error handling and debugging in R 2022.10.20 75 / 100

Call stack
Let’s turn warnings to errors and call traceback() to locate the bug.
options(warn = 2)
size <- 1000000
.roc(obsdat = sample(x = 0:1, size = size, replace =
TRUE), preddat = runif(n = size, min = 0, max = 1))
traceback()

> Error in n.x * n.y: (converted from warning) NAs
produced by integer overflow

> 5: .roc(obsdat = sample(x = 0:1, size = size, replace =
TRUE), preddat = runif(n = size,

> min = 0, max = 1))
> 4: .signalSimpleWarning("NAs produced by integer
overflow", base::quote(n.x *

> n.y))
> 3: withRestarts({
> .Internal(.signalCondition(simpleWarning(msg, call),
msg,

> call))
> .Internal(.dfltWarn(msg, call))
> }, muffleWarning = function() NULL)
> 2: withOneRestart(expr, restarts[[1L]])
> 1: doWithOneRestart(return(expr), restart)

Error handling and debugging in R 2022.10.20 76 / 100

Call stack

2: .signalSimpleWarning("NAs produced by integer overflow",
base::quote(n.x * n.y)) at gbm.utils.r#26

The bug is located, it is somewhere in (or before) line 26 in gbm.utils.r.
So we can start interactive debugging (later. . .).
(INFO: an as.numeric() was missing from the function that could convert
integer to floating-point number. . .)
Now we restore the default warn option:
options(warn = 0)

Error handling and debugging in R 2022.10.20 77 / 100

Call stack

Functions alternative to traceback() are:

rlang::last_error()
rlang::last_trace()

Error handling and debugging in R 2022.10.20 78 / 100

Call stack

When I encounter an unexpected error, my first step is used to be calling
traceback().

Error handling and debugging in R 2022.10.20 79 / 100

Call stack

We can ask R that it automatically calls traceback() when an error
occurs by options(error).
options(error = traceback)
plot(x = 1:3, y = 6:1, col = "red")

> Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and
'y' lengths differ

> 4: plot(x = 1:3, y = 6:1, col = "red")
> 3: plot.default(x = 1:3, y = 6:1, col = "red")
> 2: xy.coords(x, y, xlabel, ylabel, log)
> 1: stop("'x' and 'y' lengths differ")

An error occured, hence, traceback() is called.

Error handling and debugging in R 2022.10.20 80 / 100

Call stack

To restore the default way errors are handled:
options(error = NULL)
plot(x = 1:3, y = 6:1, col = "red")

> Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and
'y' lengths differ

Error handling and debugging in R 2022.10.20 81 / 100

Call stack

The call stack is not always useful. It is uninformative in the case of

multisession/multicore (parallel) processing
some tidyverse functions, like ggplot()
etc.

Error handling and debugging in R 2022.10.20 82 / 100

Type of errors

There are two main types of errors in R code:

syntax errors: result from invalid code statements that R doesn’t
understand
semantic errors: result from valid code that successfully executes but
produces unintended outcomes

Fortunately, syntax errors will always result in error messages

along with the line number where (near) the error occurs
hence, we have chance to detect syntax errors

Detecting, locating and debugging semantic errors are more challenging.

Error handling and debugging in R 2022.10.20 83 / 100

Type of errors

Common syntax errors:

forgotten comma or other symbol
unmatched parentheses or a bracket opened without closing it

I unexpected symbol in error
misspelled character by mistake, case-sensitivity issue

I object not found error
package is not loaded

I could not find function error
subscript out of bounds error
longer or shorter object than desired

I replacement ha XX rows, data has YY error
I number of items to replace is not a multiple of replacement length

warning

Error handling and debugging in R 2022.10.20 84 / 100

Type of errors

variable <- 5
print(varaible)
> Error in print(varaible): object 'varaible' not found

if (variable = 5) print(5)
> Error: <text>:1:14: unexpected '='
> 1: if (variable =
> ˆ

Error handling and debugging in R 2022.10.20 85 / 100

Type of errors

if (variable == 5) {
print(5)}

}
> Error: <text>:3:1: unexpected '}'
> 2: print(5)}
> 3: }
> ˆ

Syntax errors are easy to locate.
However, searching for missing parentheses might be challenging.

Error handling and debugging in R 2022.10.20 86 / 100

Debugging

Debugging is about finding a bug and solve the problem.
Finding a bug might be really frustrating and time-consuming. . .
Finding your bug is a process of confirming the many things that you
believe are true — until you find one which is not true. — Norm Matloff

Error handling and debugging in R 2022.10.20 87 / 100

Debugging

There are some common approaches.
1 searching for the error message

I in google.com or stackoverflow.com
I remove all variable names and values from the error message
I there are two packages for automated searching: errorist, searcher

2 improving reproducibility
I finding the bug is an iterative process
I it needs several runs
I decrease the data size, decrease the duration of each iteration
I reproducible example (reprex)

F we can share the problem with others
F and ask for help
F in forums (stackoverflow) and mailing lists (r-sig-ecology, r-sig-geo, ÖBI

statistics group)
F or contact the package maintainer or raise an issue in github
F see package reprex

Error handling and debugging in R 2022.10.20 88 / 100

Debugging

3 locating the bug and understanding it
I narrow the location of the bug

F both horizontally: remove all unnecessary lines of code
F and vertically: locate the level of the bug (traceback())

I also locate the cases when the bug occurs
F changing inputs (and environment, package version, R version, OS)
F ~research: set hypotheses, test them and systematically narrow the circle

4 solving the problem
I if we found the bug, it is usually obvious how to fix it
I after fixing the bug, carefully check the results!

F fixing one bug can generate or bring up new bugs in other parts of the
script

I use previously created small tests to study the desired behavior of the
script

F called: unit testing
F see packages testthat and usethis

Error handling and debugging in R 2022.10.20 89 / 100

Debugging

Some common practices for locating the bug:

insert print() calls in the code
I to see which lines/clocks/if-else branches/loop iterations are evaluated
I called “print debugging”

insert str()/class()/length()
I to check the type and shape of the variables

insert if () stop() statements
I to check conditions and immediately stop running if violated
I alternatively, you can use function stopifnot()

Error handling and debugging in R 2022.10.20 90 / 100

Debugging

A typical example:
m <- matrix(data = 1:4, nrow = 2, ncol = 2)
if (class(m) == "matrix") m <- as.data.frame(m)
> Warning in if (class(m) == "matrix") m <-
> as.data.frame(m): the condition has length > 1 and only
> the first element will be used

We expect that this code is OK, but it results a bug (a warning).

Error handling and debugging in R 2022.10.20 91 / 100

Debugging

Let’s study variable m.
m <- matrix(data = 1:4, nrow = 2, ncol = 2)
print(m)
> [,1] [,2]
> [1,] 1 3
> [2,] 2 4

It is as expected.

Error handling and debugging in R 2022.10.20 92 / 100

Debugging

“the condition has length > 1”: let’s study the condition.
print(class(m) == "matrix")
> [1] TRUE FALSE
length(class(m) == "matrix")
> [1] 2

R is right, it is more than one logical value. Why?

Error handling and debugging in R 2022.10.20 93 / 100

Debugging

length(class(m))
> [1] 2
print(class(m))
> [1] "matrix" "array"

That’s the reason: matrices are arrays as well.
After locating and understanding the bug, the solution is straightforward:
m <- matrix(data = 1:4, nrow = 2, ncol = 2)
if ("matrix" %in% class(m)) m <- as.data.frame(m)

Error handling and debugging in R 2022.10.20 94 / 100

Debugging

Usually these approches are good enough.
If not, there are some tools

in R for interactive debugging
in RStudio (or other IDEs) for interactive debugging
in R for non-interactive debugging (aka post-mortem analysis)

I wanted to talk about debugging, but it needs one more Talentia session,
sorry. . .

Error handling and debugging in R 2022.10.20 95 / 100

Debugging

So here I give you a very brief summary.
You can use

debug(), debugonce() and setBreakpoint() for stepping through
the execution of a function, line by line. At any point, you can print
out values of variables or produce a graph of the results within the
function;
browser() for pausing the execution of a function at a certain point
(aka breakpoint) and start debugging there;
trace() for inserting bits of code into a function (rarely used, mainly
for debugging code that we don’t have the source for);
recover() for navigating on the call stack and call the browser()’s
environment in a certain level
options(error = recover) for automatically start debugging at
any level in the call stack when an error occurs

Error handling and debugging in R 2022.10.20 96 / 100

Debugging

Interactive debuggers accept some special commands (n, c, s, f, Q, where)
for navigation.
Or you can use the debugger toolbar in RStudio.

Error handling and debugging in R 2022.10.20 97 / 100

Debugging

Debugging is most challenging when you can’t run code interactively
because

it’s run automatically (possibly on another computer), or
the error doesn’t occur when you run the same code interactively.

In this case, you can use

dump.frames() for saving a dump file called last.dump.rda in the
working directory
that later, in an interactive session can be loaded by
load("last.dump.rda")
and debugger() to jump into the loaded environment and debug it
interactively
using an interface similar to recover()

Alternatively, you can use the slow and primitive “print debugging”
approach.

Error handling and debugging in R 2022.10.20 98 / 100

Further reading

Chapter “Debugging” in Hadley Wickham: Advanced R:
adv-r.hadley.nz/debugging.html

Also see package tryCatchLog and its functions tryLog() and
tryCatchLog() for

advanced error handling,
configurable logging of call stack and
post-mortem analysis via dump files

cran.r-project.org/web/packages/tryCatchLog/vignettes/tryCatchLog-
intro.html

Error handling and debugging in R 2022.10.20 99 / 100

https://adv-r.hadley.nz/debugging.html
https://cran.r-project.org/web/packages/tryCatchLog/vignettes/tryCatchLog-intro.html
https://cran.r-project.org/web/packages/tryCatchLog/vignettes/tryCatchLog-intro.html

The end

Thank you for your kind attention.

Error handling and debugging in R 2022.10.20 100 / 100

